Computing the envelope for stepwise constant resource allocations

Nicola Muscettola

NASA Ames Research Center
Moffeu Field, California 94035
mus @email.arc.nasa.gov

Abstract

Estimating tight resource level bourds is a fundamental
problem in the construction of flexibl: plans with resource
utilization. In this paper we describe an efficient algorithm
that builds a resource envelope, the tightest possible such
bound. The algorithm is based cn transforming the
temporal network of resource consuming and producing
events into a flow network with nodes equal to the events
and edges equal to the necessary predecessor links between
events. The incremental solution of a staged maximum
fiow problem on the network is then used to compute the
time of occurrence and the height of each step of the
resource envelope profile. The staged algorithm has the
same computational complexity of solving a maximum flow
problem on the entire flow network. This makes this
method computationally feasible for use in the inner loop
of search-based scheduling algorithms.

Introduction

Retaining flexibility in the execution of activity plans is a
fundamental technique for dealing with the uncertain
conditions under which the plans vll be executed. For
example, flexible plans allow explici: reasoning about the
temporal uncontrollability of exogenous events (Morris,
Muscettola, Vidal 2001) and tbe incorporation of
execution countermeasures within the flexible network.
Tightly constrained schedules (e.g., »chedules that assign
a precise start and end time to all activities) are typically
brittle and it is very difficult to closely follow their
directions during execution. For an example of what
overly tight schedules can do to an intelligent execution
system, consider the “Skylab strike” (Cooper, 1996), when
during the Skylab 4 mission astronau’s went on a sit-down
strike after 45 days of trying to catch up with the demands
of a fast paced schedule with no room for them to adjust to
the space environment.

A major obstacle to building flexible schedules, however,
remains the difficulty of accurately estimating the amount
of resources that a flexible plan may need across all of its
possible executions. This problem is particularly difficult
for resources with multiple capacity that can be both
consumed and produced. In the worst case large plans may
exhibit both a high level of activity pzrallelism and a large
number of required synchronizatior constraints among
activities. Most of the scheduling riethods available to
date for this problem (Cesta, Oddi Smith, 2000) eventually
produce a fixed activity schedule, even if they make
substantial use of an activity plan s flexibility during
schedule construction.

To appreciate the difficulty of precisely estimating
resource consumption, consider the fact that a flexible
activity plan has an exponential umber of possible

instantiated schedules. This means that methods based on
complete enumeration are typically out of the question.
Lately, however, new techniques have been developed
(Laborie, 2001) based on direct propagation of
information on the temporal constraints of the plan. This
yields both an upper bound and a lower bound on the
esource level required by the plan over time. This
information can be used in various ways, e.g., to decide
when to backtrack (when the lower/upper bound interval
is outside of the range of allowed resource levels at some
time) and when a solution has been achieved (when the
lower/upper bound interval is inside the range of allowed
resource levels at all times). Bound tightness is extremely
important computationally since both as backtracking and
termination criteria it can save a potentially exponential
amount of search when compared to a looser bound.

A natural question is whether constructing the tightest
possible resource level bounds is computationally feasible.
This paper answers this question in the affirmative. We
describe an efficient algorithm for the computation of a
resource level envelope, a resource level bound such that
for each time there exists at least a schedule for the
activity plan that will consume the amount of resource
indicated by the bound. The algorithm is polynomial, with
complexity equivalent to solving a maximum flow
problem on a flow network of the size of the original
activity plan.

In the rest of the paper we first introduce the formal model
of activity networks with resource consurnption. Then we
review the literature on resource contention measures and
show an example in which the current state of the art in
resource level bounds is inadequate. Then we give an
intuitive understanding of our method to compute the
resource envelope. Then we establish the connection
between maximum flow problems and finding sets of
activities that have the optimal contribution to the
resource envelope. We then show that these sets of
activities compute an envelope. We then describe an
efficient envelope algorithm and its complexity. We
conclude discussing future work.

Activity Networks and Resource Consumption

Figure | shows an activity network with resource
allocations. The network has two time variables per
activity, a start event and an end event (e.g., e and ey, for
activity A,), a non-negative flexible activity duration link
(e.g., [2, 5] for activity Ai), and flexible separation links
between events (e.g., [0, 4] from ej 10 €4). A time origin,
T,, corresponds to time 0 and supports separation links to
other events. We assume that all events occur after T, and

before an event T, rigidly connected to Ts. The interval
T, T, is the time horizon T of the ne work.

<€3e, 12>

<€ 11> Aj

T, [30, 30]
nell,4] e -7,-5]
ry € [-1, 3} e 1, 3]
ng_e[l,:] Ty & 2. 4]

Figure 1: An activity network with resource allocations.

Time origin, events and links constitute a Simple
Temporal Network (STN) (Dechter, Meiri, Pearl 1991).
Unlike regular STNs, however, each event has an
associated allocation variable with real domain (e.g., Iy
for event es) representing the amount of resource
allocated when the event occurs We will call this
augmented network R a piecewise-constant Resource
allocation STN (¢cR-STN). In the following we will assume
that all allocations refer to a single, multi-capacity
resource. The extension of the results to the case of
multiple resources is straightforward. An event e with
negative allocation is a consumer, while an ¢ with
positive allocation 18 a producer.

Note that an event can be either a ccnsumer or a producer
in different instantiations of the allo:ation variables (e.g.,
event e, for which the bound for ry; is [-1, 3]). This
allows reasoning about dual-use activities {e.g., starting a
car and running it both make use of the alternator as a
power consumer or producer). Moreover, some events can
have opposite resource allocation of sther events (e.g., €p.
vs. €15). This allows modeling reusab e allocations, such as
power consumption by an activity. Note that this model
does not cover continuous accumulat:on such as change of
energy stored in a battery over tme. A conservative
approximation can however be achieved by accounting for
the entire resource usage at the activity start or end. We
will always assume that the cR-STN is temporally
consistent. From the STN theory, this means that the
shortest-path problem associated t¢ R has a solution.
Given two events e; and e, we denote with |ejes| the
shortest-path from e, to e;. We will call a full instantiation
of the time variables in R a schedule s(.) where s(e) is the
time of occurrence of event e according to schedule s. We
will call S the set of all possible corsistent schedules for
R. Each event e has a time bound [et(e), 1t(e)], with et(e)
= -|eT,| and lt(e)= |Tse|, representing the range of time
values s(e) for all s S. Finally, given three events, ey, €;
and e;, the triangular inequality [e;es| < |ejes] + |eses
holds.

A fundamental data structure used in the rest of the paper
is the precedence graph, Pred(R), fcr a ¢cR-STN R. This
is defined as a graph with the same events as R and such
that for any two events e; and e, with Je; es] < 0 there is a

path from e; to e; in Pred(R). Alternatively, we can say
that an event e; precedes another e, in the precedence
graph if e; cannot be executed before e;. There are several
possible precedence graphs for a network R. A way to
build one is to run an all-pairs shortest-path algorithm and
retain only the edges with non-positive shortest distance.
Smaller graphs can be obtained by eliminating dominated
edges, e.g., by applying dispatchability minimization
(Tsamardinos, Muscetola, Morris 1998). The cost of
computing Pred(R) is bound by O(VE + v? lg V) where
V is the number of events and E the number of temporal
distance constraints in the original cR-STN. The use of
different precedence graphs may affect algorithm
performance but does not affect the theoretical foundation
described here.

Considering again the activity network in Figure 1, Figure
2 depicts one of its precedence graphs with each event
labeled with the time bound and the maximum allowed

resource allocation.

Resource Contention Measures

Safe execution of a flexible activity networks needs to
avoid resource contention, i.e., the possibility that for
some consistent time assignment to the events there is at
least one time at which the total amount of resource
allocated is outside the availability bounds. There are
essentially two ethods for estimating resource
contention: heuristic and exact. Most of the heuristic
techniques (Sadeh, 1991)(Muscettola, 1994) (Beck et al.,
1997) measure the probability of an activity requesting a
resource at a certain time. This probability is estimated
either analytically on a relaxed constraint network or
stochastically by sampling time assignments on the full
constraint network. The occurrence probabilities are then
combined in an aggregate demand on resources over time,
the contention measure. Probabilistic contention can give
a measure of likelihood of a conflict occurring. However,
it is not a safe measure, i.e., the fact that it does not
identify any conflict does not exclude the possibility that
the ¢cR-STN could have a variable instantiation with
inconsistent resource allocation. Exact methods avoid this
problem and are based on the computation of sufficient
conditions for the lack of contention. (Laborie, 2001) has a
good survey of such methods. Current exact methods
operate on relaxations of the full constraint network. For
example, edge-finding techniques (Nuijten, 1994) analyze
how an activity can be scheduled relatively to a subset of
activities, comparing the sum of all durations with a time
interval derived from the time bounds of all the activities
under consideration. Relying only on time bounds ignores
much of the inter-activity flexible constraints and tend to
be effective only when the time bounds are relatively tight.
Therefore algorithms that use these contention measures
tend to eliminate much of the flexibility in the activity
network. (Laborie, 2001) goes further in exploiting the
information about mutual activity constraints. One of the
two metrics proposed in that paper is the balance
constraint, an event-centered approach that estimates
upper and lower bounds on the resource level immediately
before and after each event e in the cR-STN. These bounds
precisely estimate the contribution of events that must

precede e and overestimate the contribution of events that
may or may not happen before e. The over-estimate is
obtained considering only the worst-case situation in
which only the events that have the worst contribution
(producers for upper bounds and consumers for lower
bounds) happen before e. Although the balance constraint
better exploits the information in tre activity network, the
bounds that it produce may be very loose for networks
with significant amounts of parallel sr.
<[4,101,3> <[6,13].2>

<[2, 11],-5>

<[3,15]. 3>

Figure 2: Precedence graph with time¢/resource usage.

For example, consider the activits graph in Figure 3,
consisting of two rigid chains of n activities with the same
fixed duration and the same fixed activity separation, and
occurring on a horizon T wide :pough to allow any
feasible ordering among them. Each activity has a
reusable consumption of one unit and the resource has two
available units of capacity over time It is clear that all the
executions of this activity network ure consistent with the
resource constraint, since the raximum resource
consumption is one unit of capacity for each chain at any
time. However, the balance constraint will always detect
an over-allocation unless the network 1is further
constrained in one of two ways: a) the start activity n of
one chain occurs no later than the start of the second
activity of the other; or b) more than two activities overlap
and there is an activity k on one chain that must start
between the end of activity i and the start of activity i+2
on the other chain (Figure 3). These additional constraints
unnecessarily eliminate a large number of legal executions
of the activity network.

The cause of the inability of the balance constraint to
correctly handle this situation depeids on its inability to
account for the constraint structwe of parallel chains
simultaneously since it can only take advantage of the full
structure of the network for chains of predecessors. In this
paper we will show that it is possibl: to effectively use all
precedence constraints in the network simultaneously
leading to the estimate of the best pousible upper bound for
resource consumption.

Resource Envelopes

Our approach is to build the tightest possible resource-
centered exact contention measure. This means that for
any possible time value we will compute the maximum
and minimum possible consumption among all possible
schedules of R. Note that the maximum (minimum)
overall resource level induced by R for any possible
schedule can always be obtained by assigning each
allocation variable to its maximum (minimum) possible
value. For any specific value assignmnent to the allocation
variables, each event has a constant vieight: positive, c(e®),

for a producer and negative, —c(e), for a consumer. More
formally, given a schedule s€S and a time t € T, Est) is
the set of events e such that s(e) < t. For any subset A of
the set of events in R, E(R), we will call the resource level
increment A(A) =Zescca c(e") — c(e). The increment is
also defined for the empty set as A(Z)=0. Therefore, the
resource level at time t due to schedule s is Lg(t) =
AE(). The maximum resource envelope at time t is
Lyux(t) = max,es (Ls(t)). Similarly, the minimum resource
envelope at time t is Lin(t) = minges (Ls(t)). Our goal is
to compute both Ly, and Lo, over T.

Figure 3: Over-constraining of activity network flexibility.

In the following sections we will rigorously develop an
efficient algorithm to compute envelopes. Here, we want
to give an intuitive account of what 1s involved and of the
key complexity of envelope computation by analyzing
some simple examples.

First consider a single activity with a reusable allocation
(Figure 4(a)). We could build the envelope L Dy asking
at each time te T whether A; can happen before, after or
can overlap t. If the activity starts with a resource
production (Figure 4(b)), then we want A, to start, contain
or end at t. This is always possible between et(ess) and
lt(e,). During this interval the resource envelope is 1
while outside of it it is 0. Conversely, if Ay starts with a
consumer (Figure 4(c)), then we want for the activity to
happen completely before or after t. This is possible only
before 1t(e;s) and after et(e;e). The envelope will be 0 at
every time except between It(e;;) and et(e;.) where it will
be —1. This suggests a strategy that looks at each event and
considers the incremental contribution of the event's
weight to the envelope at the earliest time for producers or
at the latest time for consumers.

When computing L, for a complex network, however,
events cannot usually be scheduled independently.
Consider the simplest network, i.e., a rigidly linked pair of
activities with a reusable resource allocation (Figure 5(a)).
In this case the time of occurrence of €z, and es, are bound
together. Looking at the contribution to the envelope of
each event in isolation, we would want to add the
contribution of es as late as possible since it is a
consumer, and the contribution of ejs as early as possible,
since it is a producer. The decision on which time to
choose depends on the total contribution of both events.
The total contribution will be added at lt(e,,) if the total
contribution is a consumption (Figure 5(b)) or at et(e;e) if
the total contribution is a production (Figure 5(c)). Note
that in both cases e, and ess are pending at the selected
time, i.e., their contribution has not been added yet to the
envelope but they both could occur at the selected time.
This suggests a strategy that considers all pending events
at either the earliest time or the latest time of some event
and schedule those that either must be scheduled or are
advantageous, i.e., contribute overall with a production of

resource.

Now consider the network in Figuie | and the event time
bounds, maximum resource allocation and precedence
graph in Figure 2. Assume that we want fo compute
Loax(3), the maximum envelope at time 3. The set of
events that may be scheduled before, at or after time 3 is
{e15 €1cs €35, €30y €45} However, of hese only {€1e) €365 Cies
e} are pending since it is advanta;zeous to consider ey at
its earliest time 1. The subset of events that we could
consider at time 3 are all those that will have to occur at or
before 3 assuming that we select fcr some set of events to
occur at 3. These subsets are {ex}, {€1s}, {€3e €35} and {ey,
€10 €30 €35}. Unfortunately, each >f these subsets has a
negative weight and therefore none of them is considered
at time 3. At time 4 the set of pending events is
augmented with ez and the total contribution of the new
subset of pending events {e, €, €1., €3¢, €35} IS POSItive.

<[0,3],rn> <[5, 10], 11>
€is €le
A n=1 r=-1
]
, 35
0 10 U >
-1
(b))

Figure 4: Maximum resource envelop. for a single activity.

The selection of a maximally advar tageous subset among
the pending events is the key source of complexity of
envelope calculation. An exhaustive enumeration of all
subsets can obviously be very expensive. Fortunately we
can make very good use of the information in the
precedence graph. It turns out that this problem is
equivalent to a maximum flow p-oblem solved on an
appropriate auxiliary flow network built on the basis of
Pred(R). We will discuss this rigorously in the rest of the

paper.

Calculating Maximum Resource
Level Increments

Consider now an interval HCT. We can partition all
events in R into three sets depencing on their relative
position with respect to H: 1) the closed events Cy with
all events that must occur strictly before or at the start of
H, i.e., such that that lt(e) < start(H); 2) the pending
events Ry with all events that can occur within or at the
end of interval H, i.e., such that It(e) > start(H) and et(e)
< end(H); and 3) the open events Oy with all events that
must occur strictly after H, i.e., such that et(e) > end(H).
The set Ry could contain events that can be scheduled
both inside and outside H. If H=T. then Ci= &, Rr =
E(R) and Ogx=@. The interval H could be reduced to a
single instant of time, i.e., H=[t, t]. In this case we will
use the simplifying notation Ci=Cp, 4, R=Ry, 4 and
Ot=0[(, t)-

We are interested in a particular kind of subset of Rg.
Assume that we wanted to compu e the resource level
increment for a schedule s at a time t€ H. This will always
include the contribution of all events in Cy and none of

those in Og irrespective of s and t. With respect to the
events in Ry, we can see that if an event is scheduled to
oceur at or before t then all of its predecessors (according
to Pred(R)) will also have to occur at or before t. In other
words, it is possible to find a set of events X € Ry such
that the events e, Ry that are scheduled no later than t in
s are those such that |ece,| < 0 for some e, € X. We call
this the predecessor set of X, Px. Therefore, the resource
level at time t for a given schedule s is the sum of the
weights of events in Cy and in Pyx.

<[0, 3], r;> <[4,10], 11> <5, 11],r2><(8, 14], -12>
R T

As es

(b) (c)

Figure 5: Maximum envelope for two chained activities.

It is easy to verify that given two predecessor sets Px and
Py, both Px N Py and Py UPy are also predecessor sets.

Resource Level Increments and Maximum Flow

Since we are interested in the maximum resource level we
want to find the predecessor set with maximum resource
level increment. We will do so by finding a maximum
flow for an auxiliary flow network built from Ry and

Pred(R).

Resource Increment Flow Problem: Given a set of
pending events Ry for a cR-STN R, we define the resource
increment flow problem F(Ry) with source o and sink tas
Sfollows:
1. For each event e € Ry there is a corresponding node
ecF(Ry).
2. For each event ¢ €Ry, there is an edge 0— " with
capacity c(e").
3 For each event € € Ry, there is an edge € —7T with
capacity c(€’), i.e., the opposite of € 's weight in R.
4. For each pair of e; and ey with an edge e;—e; in the
precedence graph Pred(R), there is a corresponding
link e;—e, in F(Ry) with capacity +oe

Intemnal flow (precedence constraints)

------------------ Incoming flow (producer events)
———— Qutgoing flow (consumer events)

Figure 6: Resource increment flow problem.

As an example, Figure 6 shows the auxiliary flow problem
for Ry relative to the activity network in Figure 1.

A detailed discussion of flow probleins is beyond the scope
of this paper (for a complete treatment see (Cormen,
Leiserson, Rivest 1990). Here we highlight some
fundamental concepts and relations that we will use. We
will indicate as f(e;, es) the flow associated to a link
e,—e, in F(Ry). The flow functicn is skew-symmetric,
i.e., f(es, ;) = - f(e}, e;). Each flow has to be not greater
than the capacity of the link to which it is associated. For
example, referring to the flow netwcerk in Figure 6, 0 < (g,
es) <2, 0 < fle,, T) < 4 and fley,. e4) 2 0. Note that a
flow from e, to e; can be negative only if the flow network
contains an edge e,—e; with posit.ve capacity. We also
use an implicit summation notation f(A, B), where B and
A are disjoint event sets in F(Rg), to indicate the flow f(A,
B) = ZacaZvesf(a, b). Consider nov/ any subset of events
ACRy and let us call A the set of events A = Ry-A. The
following flow balance constraint always holds: f({c}, A)
= f(A, {1}) + f(A, A). The total network flow is defined as
f({o}, Ry = f(Ry, {1}). The maximum flow of a network
is a function f. such that the total network flow is
maximum.

The fundamental concept used by all known maximum
flow algorithms is the residual network. This is a flow
network with an edge for each pair »f nodes in F(Ry) for
which the residual capacity, i.e., the difference between
edge capacity and flow, is positivz. Each edge in the
residual network has capacity ecual to the residual
capacity. For example, considering he network in Figure
6, assume that f(er., T) = 3 and f(o, ez.) = 2. The residual
network for that flow will have the flowing edges: €.—7T
with capacity 1, T—eje with capaciiy 3 and ex—0 with
capacity 2. Also note that any residual network for any
flow of F(Ry) will always have an edge of infinite capacity
for each edge in the precedence graph Pred(R).

In this paper we will make use of three different kinds of
paths in the residual network. The frst is an augmenting
path connecting ¢ to T. The existence of an augmenting
path indicates that additional flow cin be pushed from o
to 1. Several maximum flow algorithms operate by
searching for augmenting paths. Alternatively, the lack of
an augmenting path is the condition that indicates that a
flow is a maximum flow. The secoad kind of path is a
flow-shifting path, a loop connecting T to T which does not
affect the overall flow in the network. Finally, the third
kind is a reducing path, i.e., a path ‘rom T to ©. Pushing
flow through a reducing path reduces a network’s flow.
We now establish the relation betwesn the resource level
increment A(A) and any flow in F'Ry). We define the
producer weight in A as ¢(A”) = Xes ¢ a c(e”) and the
consurner weight in A as ¢(A) = Z. ¢ 4 c(€). We also
define the producer residual in A as r(A") = c(Ah —
f({c), A), i.e., the total residual capacity of the edge
incoming A from s, and the consumer residual in A as
r(A) = ¢(A") — f(A, {1}). The followir g relation holds.

Lemma 1: A(A) =r(A") —r(A") + f(A, A).

Proof: A(A) = ¢c(A") —c(A) = (c(AY - f({o}, A)) - (c (A"
y - f{c}, A)) = r(A") - (¢(A) - f(A, {th - f(A, A) =
rA") —(A) + f(A, A). O

We now focus on predecessor sets such as Px.

Lemma 2: f(Px, Px) < 0. Moreover, f(Py, Px)=0 if and
only if f(e;, e2)=0 for each e,€Px and e;€Py.

Proof- From the definition of predecessor there is no edge
e;—e; in F(Rg) with e,€Px and e;ePx. Therefore, f(e,,
e;) < 0 and f(Px, Px) < 0. The second condition can be
demonstrated by observing that the sum of any number of
non-positive numbers is 0 if and only if each number is 0.

o

Another way to express Lemma 2 is that f(Py, Px)=0 if
and only if there is no link e;—e; in the residual network

where e¢,€ Py and e;€ Px.

Corollary 1: A(Px) <r(Px’) - r(Px’).
Proof: Immediate from Lemma | and Lemma 2.

Maximum flows and maximum resource level

increments

We are now ready to find the maximum positive resource
level increment. Note that we are not interested in event
sets with negative resource increments since, as we
discussed before, we will only account for events in our
resource envelope simulation if they have a positive
contribution. If they do not, we will take them into account
when we must, i.e., when their temporal upper bound
becomes lower or equal to the current simulation time.
First we address the problem of whether Ry contains a set
of predecessors P with positive resource level increment,
i.e., A(P") > 0. To do so we will make use of a maximum
flow f. of F(Ry). We will indicate with Foax(A)
producer/consumer residual computed for fax. The
following fundamental theorem holds.

Theorem 1: Given a partial plan Ry, there is a
predecessor set P* such that AP >0 if and only if
rmax(RH+) > 0.
Proof: [0 : We prove that if there is a P such that A(P*)>
0, then ry.(Ry") > 0. Assume that Fmax{Ru") = 0. This
means that for any predecessors subset Px we have
roax(Px’) = 0. From Lemma 2 we would have AP <
Tyax(P™) < 0, that is a contradiction.
«: We prove that if Fuax(Ru") > 0 then we can identify a
P° such that A(P")>0. If rua(Rg") is positive, there must
be some e such that ry..(e) > 0. Let’s select P’ as the set
of events reachable by some path in the residual network
originating from e*. The following three properties hold.
1. P is a predecessor set.
If not. there will be an event e; & P” such that [ejez[< 0
for some event e;€ P*. From the definition of Pred(R),
however, we know that there must be a path in Pred(R)
from ¢; to e Since this path will be present in F(Ru)
with all links having infinite capacity, the path will also
always be present in any residual network for any flow.
Therefore there is a path in the residual network going
from e* to e; to e; and e;€ P", which is a contradiction.
2. PT) = 0. ,
If not, there will be an event € € P’ such that rpa(€) >
0. We can therefore build an augmenting path of F(Ru)
as follows: 1) an edge o—e* with positive residual
capacity rpa(€”); 2) a path in the residual network from

e* to e, which exists by definition of P’; and 3) an edge
e —T with residual capacity rmade). The existence of
the augmenting path means that faax 1S NOL & Maximum
flow, which is a contradiction.

3. fras(P, B) =0
Since P* is a predecessor set, from the proof of Lemma
2 we know that foux(P’, P €0 If fun(®’, B < 0, it
means that there is a pair of events e;€ P’ and e P’
such that f,a.(ey, €2) < 0. This rieans that the residual
capacity from e; to e, is positive and therefore there is
an edge e;—e; in the residual network. But this means
that e, P”, which is a contradictin.

Applying the properties of P’ to the relation in Lemma 1

we obtain AP') = K (B™) = Toux(P™) + P, B =

rnmx(P +) 2 rnmx(e*) >0.0

It is now easy to find the predicessor set P with
maximum positive resource level increment.

Theorem 2: Consider all event. e'; €Ry such that
Fmac(€’) > 0 and consider the event set Ppax = Uesi P’
where P'; is the set of events reachable from e in the
residual network Of fpae Then Ppe is a set of

predecessors in Ry with maximum L(Praz) > 0.

Proof: Each of the P, has the properties proved in

Theorem 1. We show that Py also has those properties.

1.Being the union of predecessor sets, Pmax is also a
predecessor set.

2. We know that ryay(€) = 0 for each e € P",. Therefore
rm;u(CP.m.'-lx) =0. . .

3. From Lemma 2 we know that since (P, P';)=0, there is
no flow from events in P’; to events in P’i. Therefore
there is also no flow from events in B*,,m =y g:i to
events in P’y Hence, from Lemma 2 f(P waxn
B max)zo-

Therefore A(Pmay) = Finax(P aax) > 0.

Moreover, since by construction P contains all e, with

Fuma(€') > 0. Therefore, for any other predecessor set Py it

1s rmax(P+X) < rnlmx(P+xm\x)' Hence, A(PX) < rl]li\Y(P+X) -

rmax(P_X) < rxllax(P+X) < rmax(P+max) = A(Pmax)~ a

So far we have constructed Py fromn a specific maximum
flow for F(Rg). However, it turns cut that Ppay 13 unique
for all maximum flows of F(Rg). Moreover Py, contains
the minimurn number of events among all predecessor sets
with maximum positive resource lev :l increment.

Theorem 3: For any solution of the maximum flow
problem for F(Rg), Ppax is the mi. umal predecessor set
with maximum resource level increment AP).

Proof: Consider the set {faaxs) with i=1, ..., nof all n
different maximum flows of F(Rg). Since each
corresponding Py, 1S @ maximum yositive resource level
increment sets, A(Pmaxi) = Amaxe Als0, given two distinct
maximum flows i and k, we have Puag; = Pirk U Pii
where Pjx= Pmax.i M Pmax,k and Pyi= Pmnx,k - Praxic In the
following we will indicate with rj(¢) the residual Fmax(€)
computed in flow £y

First we observe that for any two dis incti and k, AP;ir)=
Amax. In fact, P is a predecessor set and P~k)=
re(Pini)=0. Therefore A= Fi(Piai)= tulPink). We
need now to show that E(Piak) = I (Puaxi™) = EiPuaxk’) -

In fact, it must be r;(Pei")=0 since Pp,ye; must contain all
et events with ri(e") > 0. Also, Apay= i(Proaxi) =APmax)
< ri(Pmax.k+) - ri(Pmax,k') < ri(Pmax,k+) which 1mplleS
r;(PixH=0. But this means that the flow in A(Pi~g) is self
contained, i.e., there is no edge in the residual network of
flow £y that exits Piqg. Therefore, in this flow none of
the events in P,x is reachable from an e" event and
therefore Pix=@. With a syminetric argument we can see
that P,;=@. Therefore for any i and k it must be Puayi=
Puoxk = Puax The minimality of Pmax derives from
applying t0 Pray — P? the same argument used to
demonstrate that Py is empty, where PPCPox is a
predecessor graph with maximum positive resource level

increment. [

Building Resource Envelopes

So far we know that the resource level at time t € H for a
given schedule s is the sum of the weights of the events in
Cg plus those of the events in some predecessor set Py. It
is not immediately obvious that the converse also applies,
i.e., that given any predecessor set Px one can determine a
time ty € H, the separation time, and a schedule sy, the
separation schedule, such that all and only the events in
Cyr Py are scheduled at or before time tx. The reason this
is not obvious is that events are still constrained by upper
bound constraints, i.e., the metric links that are not
included in Pred(R). Scheduling some event too early
with respect to ty may therefore force some event to occur
before time tyx whether the event is a successor in Pred(R)
or not. We will show that indeed we can find a separation
time and schedule for any Px and therefore also for Poaxe
For the latter we will show that tx represents one of the
times at which the resource level is maximum over H for
any schedule. This will yield the resource envelope Ly if
we reduce H to a time t and scan t over the horizon T.

Latest events

The first step is to identify the events in Px that will be
scheduled at time ty. We say that e is a latest event of Px
if it is not a strict predecessor of any other event in Px,
ie., for any e; € Px e ¢ 2 0. There must be at least one
latest event in Px. If not, for every event ex € Px, there
would be an event e € Py such that |e; e | < 0. But this
would mean that it would be possible to create a cycle €y
S ey > ... > e linked by links [eig x| < 0, which
is a contradiction to the hypothesis of temporal
consistency of R. We will call Py 1z the set of all latest
events in Px. Also, we define Pyeariy = Px — Px jate-

The following properties hold for the temporal relations
between events in Px, ates Px, earty and Px.

Property 1: For any two evenis €j, €2 € Py iuter lerez] 20
and ez e;] 20.

Property 2: For any two evenis e; € Py and e; € Py a0

lez e;] > 0.
If not, e; would belong to Px by the definition of Px.

Property 3: Any event ;€ Py oariy is @ SIFiCt predecessor
of some e; € Py e L€, |eze;| < 0.

If not, consider any two events e1,e3 € Py - FOr any e; it
would be |ese;|=0 and |ese5|=0. Therefore, 0=[ezes| < |esey|
+ |eses| = |eses, i.e., Jeses] 2 0. Since this would be true for
any pair of events in Py eany and fo- all distances between
any event in Pxeany and any event in Py all events in
Pysearty Would be latest events, i.e., Fx,earty=2-

Separation Time for Latest Events

We now show how to construct the separation time tx at
which we will schedule all latest events.

Lemma 3: There is a time interval [ty min Lxmaxl that is in
common among all time bounds jer(e), lt(e)] with e €
Py e and such that start(H) <ty max

Proof- First, we show that there must be a time value in
common among all time bounds. -t not, there would be
two events e, €; € Pxae Such that et(e)) > It(e;). From
the triangular inequality we also have that |e;e;] < - et(ey)
+ lt(e;) < 0, which is inconsistent with Property 1. Now,
assume start(H) > tx max By the way the interval [tx, mins
tx, max] 15 constructed, there must exist an event e € Py, e
such that It(e) = tx, max For this event it would be It(e) <
start(H) that is a contradiction with e belonging to Rg.U

We define tx= max (start(H), tx, mi), With tx = start(H) if
Pyx=, in which case tx = start(B). We can then show
that the time bound of each event in Py indicates that each
of themn can be scheduled after tx.

Lemma 4: For any event e € Py, lt(:) >ty

Proof: By definition of Ry it must e 1t(e) > start(H). So
we only need to consider the case in which tx = tg min >
start(H). In this case there is at leas: one event €, € Px, 1ate
such that et(e;) = tx, min- FOr this event it is |e; ¢ < - et(er)
+ It(e). From Property 2 we krow that |e; ¢ > 0.
Therefore, 1t(e) > et(e;) + |e;] > et(ey) = tyx, min-J

Separation schedule for predecessors

We now show how to build a separarion schedule sk for Px
and ty, i.e., a schedule such that sxle) < tx for e€ CpuPx
and sx(e) > tx for ee PyUOx. Ncte that the following
discussion holds also if Px=.
We will do this with the following algorithm.

1.Schedule all '€ Py 1z at ty, i€, Sx (€') = tx.

2.Propagate time through R obtaining new time bounds

[et’(e), It’(e)] for each ee E(R).
3.Schedule all events e’ E(R) —Pxqe at their new
latest time, 1.e., sx(¢’”) = 1t’ (e”).

To show that sy is a schedule we need to see that it is
consistent with respect to R. We see that step 1 is
consistent since: 1) tx belongs to the intersection of all
latest event time bounds; 2) since for any pair of latest
events e ez[>0, scheduling one at tx does not prevent any
other latest events to be scheduled a time tx as well. Step
3 above is also consistent since it is always possible to
schedule all events at their latest ti nes without temporal
repropagation.
Now we need to show that the property defining a
separation schedule 1s satisfied for sx. Note that we
already know that it is satisfied for events in Pyjae. By
definition of Cg and Oy, we also know that it is satisfied

for events in these two sets. Therefore, we need to show

that it is satisfied for Px eary and Px.

a)lt’(e) < tx for all e € Py earty
According to Property 3 we can pick an event €,€ Py, 1ate
that |e; €| < 0. From the triangular inequality we have
It’(e) < It’(e;) + Jer ef < 1t’(ey) = tx.

b)1t’(e) > tx for all ee Px.
From Lemma 4 we know that before the re-propagation
it was lt(e) > tx. After the propagation, either
It’(e}=It(e), in which case the condition is satisfied, or
It’(e) has changed with a propagation starting from
some event e;€ Px jae- SO it must be Ib’(e) = tx + ese]|
and since from Property 2 |eje| > 0, 1¢’(¢) > tx.

We can now compute Ly, over the entire time horizon T.
P,..x(Rp) indicates that it is computed over F(Rg).

Theorem 4: The maximum resource consumption for any
schedule of R over an interval HCT is given by A4 (Cy) +
A(Pmnx(RH))-

Proof: We know that at any time te H the events in Ry
that are scheduled before t are a predecessor set Px. For
the resource level at time t it is always A (Cu) + A(Py) <A
(Cr) + A(Puax(Ryp), the latter heing the resource level at
the separation time for the separation schedule. This is

true also if Paad(Ry) is empty.C
There are two interesting special cases of Theorem 4.
resource

Corollary 2: The maximum possible
consumption for R over T is equal to A(Po(R7T)).

This means that estimating the maximum possible
resource consumption over time has the same complexity
of a maximum flow problem.

Corollary 3: Lmax(t) = A(Cr)+A(Pn1nx(Rl))-

The last formula tells us how to compute the resource
envelope. We now néed to find an efficient algorithm.

Efficient Computation of Resource Envelopes

From Corollary 3, the naive approach to compute a
resource envelope would be to iterate over all possible
te T. We can improve the running time by considering
that we only need to compute L at times when either C,
or R, changes. It is easy to see that this can only happen at
et(e) or lt(e) for any ee E(R). Therefore we need to re-
compute a maximum flow for a partial network in R only
2n times, a substantial improvement over |T].

The complexity of some known flow algorithms is
described in Table 1(Cormen, Leiserson, Rivest 1990).
Note that the number of edges E is O(V") where V is the
number of events and 1<x<2. Therefore the complexity of
maximum flow algorithm is always O(Vk 1g'(V)) with
1<k<5 and j €{0, 1}. Let us now consider the worst case
complexity of re-computing a flow at et(e)/1t(e). In the
worst case, C, will remain empty at all times and the size
of each R, will increase by 1 for each computation of the
flow. Therefore the worst case complexity of this method
is Oy yOIgE)=0(V"1g'(V), a polynomial of
higher order than maximum flow.

We can do betrer. Assume sorting all earliest and latest
times in ascending order to yield a set {t(1), t(2), ...,
t(2n)}). Suppose now that when we compute the maximum
flow for F(R,;) we make as much use as possible of the
maximum flow for F(Re.pp)- [n this case we can come up
with an algorithm with the same worst-case complexity as
computing the maximum flow on th: entire network.

Incremental Change of Pending Events

Before we introduce the algorithm, let us consider the
differences between Ry; and Rypy (I<i<n), The first
difference 8(Cyy) = Rugyy — Ry 18 the sets of events e such
that t(i) = It(e). They must move from Ry, to Cys) at time
t(i). The second difference, 8(Ry) = Ry - Ry, are the
events e such that t(i) = et(e). They must move from Oy,
to Ry at time t(i).

Figure 7 gives a complete picture of how all relevant event
sets change at time t(i). In this picture Eax(t(-1) = Cyiy
U Puax(Re.1)) is the set of events reeded to compute the
resource envelope at time t(i-1). Epad(t(i)) = Ciy Y
Poaax(Ruq) is used to compute the resource envelope at time
t(i), with Cys, = Capy + S(Ct(i)). Tt e difference E,nax(t(i))
— E..(t(-1)) can be separated into two disjoint sets
8(Ct(i))_ Pmax(Rl(i-l)) and Pmax(Rt(il) - Pmm(Rt(i-l))- The 2031
of the efficient envelope algorithm is to identify the set
Poax(Ri) — Paax(Rya)) with less effort than computing
Poax(Risy) and Prax(Reg.py) with separate maximum flow
computation and then differentiating them.

Ford-Fulkerson O(E]
Edmonds-Karp (e]a% %)

Simple preflow-push O(V'E)
Preflow-push OV’
O(VE 15(VY/E))

Goldberg-Tarjan

Table 1: Complexity of known maximum flow algorithms

Before proceeding notice that Figure 7 assumes that
Pmax(Rt(i)J M Pmnx(Rl(i-l)) e Pnu\x(Rt(i,)' As we will see this
is indeed the case. The consequence of this is that as soon
as Prax(Ryyy) has been determined and accounted for in
the envelope calculation, the subietwork of F(Ryi.1y)
consisting of all events in Pou(Rys 1)) and all incoming
and outgoing edges can be deleted. This allows the
computation of Poax(Ryi))~Pmax(Ryiy) directly from the
maximum flow of F(Ryg-Paax(Ri-n)) which can save
significant work.

The second efficiency improvemert is computing the
maximum flow of F(Rs-Pmax(Rei.y) by incrementally
modifying the flow of F(Ru1-Pue«(Ri-2))) during the
deletion of events in 8(Cyg) and the addition of events n
8(Ry;,) while maintaining the maximum flow property.

Incremental Modification of Maximum Flow

Let us focus on modifications of the flow network that
preserve the maximum-flow. To do so we introduce the
concept of a prefix and postfix of . resource increment
flow network F. Consider a partition of events in the
network in two event sets, Post(F) and Pref(F). We say
that Post(F) is a postfix of F and Pref(F) is a postfix of F
if for each pair of events e;e Post(F} and ex€ Pref(F), |e,

e, > 0. It is immediate to see that for any flow of F it can
only be f(e,, ep<0. Therefore the residual network
contains an edge e;—e; only if there is an edge e;—e; in
the flow network and there is a positive f(ey, €,) passing
through it.

We can see that 8(Cyy) is a prefix of F(A) where A is any
subset of Ry, that contains 8(Cyy). In fact, consider a
pair of events e; € 8(Cyy) and e, € A - 8(Cy). From the
definition of 8(Cy;) we have lt(ey) = t and It(e;) t+1.
From the triangular inequality It(e,) < lt(e;) + ez e4] we
can deduce |e;)] > It(ey) - It(e;) 2t +1-t =1> 0. A
similar argument applies to demonstrate that 8(Ryy) 1s a
postfix of F(B) where B is any subset Ry that contains

8(Ru)-

We now introduce two flow modification operations: flow
reduction and flow expansion.

_ CI(i-U

——-- Ry
Rus
NN 8(Cay)

&Ry
/_’\J Punax (Rui 1»)

Porax (Run)

snmm Enm(t(i-l))
—F(U))

Figure 7 : Incremental change for set of pending events

Flow contraction: Consider a network F(A), a flow f for
F(A) and a prefix of A, Pref(A). Flow contraction CONSIStS
of the following two steps:

I)while there is a flow-shifting path in the residual
network connecting an e event in Pref(A) to an €
event in A-Pref(A), push flow along the path and
update the residual nerwork accordingly;

2)while there is a reducing path in the residual network
connecting an € event In Pref(A) to an e” event in A-
Pref(A), push flow along the path and update the
residual network accordingly.

Lemma 5: If the flow fmax is maximum for F(A), Sflow
contraction produces a maximum flow for F (A-Pref(A)).

Proof: I fuay 1s maximum, the flow > produced at the end
of step 1 is still a maximum flow for F(A). This because
flow shifting does not affect f({s}, A*Y) since no flow is
pushed back through any edge f{s, e*). At the end of step 2
we will have a flow . Note however that any
modification of the residual network in step 2 can only
eliminate existing edges and therefore eliminate paths.
Since > maximality implies that there are no augmenting
paths in it going to events e’€ A-Pref(A), there will be no
such augmenting paths in £ either. Therefore £’ will be

maximum in F(A- Pref(A)).0

Note that in achieving the maximum flow for F(A-
Pref(A)) it is always better to us flow-shifting paths before
reducing paths, since if flow needs to be moved from

Pref(A) to A-Pref(A) to achieve optimality, a flow-
shifting path is always shorter than the concatenation of a
reducing and an augmenting path.

Flow expansion: Consider a netwcrk F(A), a postfix of
A, Post(A)), a flow f for F(A-Posi(A)). Flow expansion
consists of the following steps:

o while there is an augmenting path in the residual
network of F(A) connecting an e” event in Post(A) to
an € event in A, push flow along the path and update
the residual network accordinglyv.

It is clear that flow expansion prod ices a maximum flow
f,ax for F(A). Also, if the starting flew for F(A-Pref(A)) is
a maximum flow, flow augmentation will minimize work.
This is important in our application of maximum flow to a
sequence of n F(Ry) problems since re-doing
unnecessary work may negativelv impact asymptotic
complexity.

Flow Network Reduction

Now we will show that it is always safe to eliminate any
events in Pu.y(Ry.py) from considera ion once their impact
on Loax(t(i-1)) has been recordesl. Consider the set
8(Cii)) Prax(Ry1y). The effect of these events is already
included in L.(t(i-1)) and therefore their contribution
does not need to be included in L..(t(i)). Let us now
consider the effect that flow reducion applied to these
events has on the maximum flow of F(Ry;.1) N Re). From
the property of the predecessor set with maximum
resource level increment, we know that f(ee;)=0 and
flese)=0 with €€PmRig1y) nd €36 Prax(Ryany)-
Therefore, the residual network for the maximum flow of
F(Ry;.1y) does not have any edges e;-»e;r. Also, since all e
€ Pouc(Ry.1)) are saturated (ruax(e’)=0), there cannot be
any edge e;—t in the residual network. Therefore, there
cannot be any flow shifting and the only way to push flow
back from an €€ Pgue(Ryi.p,). 18 to o so through an e'e
P.ax(Ri.p)- Therefore, flow changes during flow
contraction due to events in Pr.(Ryi1y) do not affect the
rest of the network.

Consider now P (Ryi.1))—8(Cysy). We know that after
contraction the flow is maximum for F(Ry.pMRyg)-
Therefore all € €PuudRyin)—8(Cyiy; are still saturated.
Also, there will be at least one €' Py (Rii.1)—8(Ceiy)
with Tpax(e)>0. If we now add 8(Ryy) and apply flow
expansion, we know that throughout the process there will
be no augmenting path exiting from e€Pux{Re.
1)~-8(Cys)- At the end of the process. Pax(Rig.1))~0(Ciay)
will still be isolated and therefore A(Ppax(Ru.
1))_5(Ct(i)))>0- Therefore anx(R!(i));2P|1L1x(Rt(i-l))~5(Cl(i))-
Therefore, A(Puax(Ryr1y)) will be par: of both Lyuy(t(i-1))
and L,u.(t(i)). Moreover, the presence of Ppax(Ryi.1)) has
no effect on the flow modification operations and therefore
all events in Py, (Ry;.1) together with their incoming and
outgoing edges can be safely elimirated from any flow
network considered by the algorithm after F(Ryg.yy)-

Figure 8 shows the pseudocode of the algorithm. Here we
assumne that after executing flow contraction , the function
Flow_Contraction function also deletes from the network F
the portion pertaining to the events in P.Ecose. Similarly
we expect Flow_Expansion to add to F the portion

pertaining to Epend. The function Network_Reduction
deletes from the network F the portion pertaining to Pmax.
Finally, Extract_P_max finds the Ppax in the maximum
flow of F by collecting the events that are reachable in the
residual network of F from each e* with ryuy(e*)>0.

Complexity Analysis

Now we can show that the complexity of
Resource_Envelope is asymptotically the same as running
a flow algorithm over the flow network F(R) for the entire
cR-STN. We demonstrate this for the Ford-Fulkerson
method. This is the simplest maximum flow method and
tends not to perform well when the internal “pipes” of the
flow network have bottlenecks (Cormen, Leiserson, Rivest
1990). However, this is not true for F(R) in which the
capacity of all internal pipes is +eo. Therefore in our case
the Ford-Fulkerson method should perform well. The
complexity of Ford-Fulkerson is O(E [fina]), where E is
the number of edges in the flow network and [fn, is the
amount of the maximum flow pushed through the

network.

Resource_Envelope (R, Pred(R))

{ Low:=0; /* envelope level at previous iteration time */
Pras 1= & /* temporary variable o hold Pmax *f
Envelope := &, {* envelope profile, a list of pairs e=<t, L> where s the

time at which the envelope reaches leve! L. The
envelope stays constant at L until the time of the
following entry in the list ~ */
F:=2; /* auxiliary flow graph for F(Ryi-Pmax(Rei.u)*/
E := (sorted list in ascending order of t of triples <Eciose, Epend, 1> Where Ecioas
is the set of events e in Pred(R) such that it{e) = t and Epena is the list
of events e in Pred(R) such that et(e) = t};

t:=0
while (E is not empty)
{ Ecor = Q;
p := pop(E);
ti=pg

F := Flow_Contraction(F, p.Ecioss};
F := Flow_Expansion(F, p.Egenq, Pred(R});
Pmax := Extract_P_max (F);
F := Network_Reduction(F, Pma);
Loew := Loid + A(Eciose) + A(Pmax);
Envelope := append (<t, Laew>, Envelope);
Lotd := Lnew;
} }

Figure 8: Maximum resource envelope algorithm .

Let us consider separately the total cost of the three flow
propagations in Flow_Expansion and Flow_Contraction: the
one across augmenting paths, the one across flow-shifting
paths and the one across reducing paths.

Consider the propagation across augmenting paths.
Consider the total flow that we will be able to push from
the source throughout these propagations. Since when we
push flow from e’ events in 8(Ry;), some events e may
have become unavailable (through deletion) or saturated
(due to flow shifting). Therefore the total flow we can
push in Flow_Contraction is no greater than [foaxl in F(R).
Moreover, the set of edges over which the search for
augmenting paths is conducted is always not greater n

each invocation of Flow_Expansion than in the the
application of maximum flow to the entire F(R).
Therefore, the total cost of Flow_Expansion is O(E [fya])
Consider now the propagation across flow-shifting paths
in Flow_Contraction. Consider an auxiliary flow graph
Shift(R) built as follow: for each 8(Cy;) consider all edges
in the flow-shifting paths before the application of
Flow_Contraction(F, 8(C,s)) and for each pair of events e;
and e, (including o and T) add the link with maximum
capacity in some of the flow-shiiting paths across all
invocations of Flow_Contraction. The total number of
edges in Shift(R) is bounded by 2 E + 2 V, since this is
the maximum number of edges i1 a residual network.
Considering now pushing flow fromn an € in &(Cyy), we
notice that the pipes that are availeble in Shift(R) are no
smaller than those available in the flow-shifting paths
during the execution of Flow_Contraction. Moreover, the
lengths of the paths is no shorter in Shift(R) than in each
invocation of Flow_Contraction since events are not deleted
in Shift(R). Finally, the total flow that can be shifted is no
greater than |fua], since this is an upper bound of the
maximum amount of flow that reaches t from some e
From this argument we can see that the total amount of
work done during the flow-shifting step Flow_Contraction
is bounded by O(E [fuas]). A similer argument applies to
the flow reduction step in Flow_Contraction with its
complexity again bound by O(E [fna). Therefore the total
cost of Flow_Contraction and Flow_Expansion in
Resource_Envelope is bounded by 3 O(E |fax])-
Considering the other steps in Resource_Envelope, the
sorting step to initialize E is O(V 1gV), and the total cost
of Extract P_max and of incrementally constructing and
deleting the flow network, is 3 O(E). Under the reasonable
assumption that the asymptotic cosi of flow computation
dominates O(V 1gV), the total cost »f Resource_Envelope
is O(E [f.ux]) i-€., it has the same asymptotic complexity
than running the flow algorithm once over the entire

F(R).

Conclusions

In this paper we describe an eficient algorithm to
compute the tightest exact bound on the resource level
induced by a flexible activity plan. This can potentially
save exponential amounts of work with respect to looser
bound computations. Future work includes testing the
practical effectiveness of resource envelopes in scheduling
search for problems with multi-capacity resources. This
includes both direct use as a backtracking and termmation
criterion in a constrained based scheduling algorithm for
multi-capacity resources and the additional development
of effective variable and value ordering heuristics based on
resource envelopes.

References

1.C. Beck, A.J. Davenport, E.D. Davis, M.S. Fo>. Beyond Contention:
Extending Texture-Based Scheduling Heuristics. in Proceedings of AAA]
1997, Providence, RI, 1997.

A., Cesta, A. Oddi, S.F. Smith, A Constraint-Ba;ed Method for Resource
Constrained Project Scheduling with Time Wind yws, CMU RI Technical
Report, February, 2000.

H. S.F. Cooper Ir.. The Loneliness of the Long-Diuration Astronaut. Air &

Space/Smirhsonian. June/July 1996, available a
hitp://www.airspacemag.con ASM/Mag/Index/t 966/)/tida.htinl

T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms.
Cambridge, MA, 1990.

R. Decheer, [. Meiri, J. Pear]. Temporal Constraint Networks. Artificial
Intelligence, 49:61-95, May 1991.

P. Laborie. Algorithms for Propagating Resource Constraints in Al Planning
and Scheduling: Existing Approaches and New Results, Proceedings of
ECP 2001, Toledo, Spain, 2001.

P. Moris, N. Muscettola, T. Vidal. Dynamic Control of Ptans with
Temporal Uncertainty, in Proceedings of IHCAI 2001, Seattle, WA, 2001
N. Muscettola. On the Utility of Bottleneck Reasoning for Scheduling. in
Proceedings of AAA! 1994, Seattle, WA, 1994,

W.P.M. Nuijten. Time and Resource Constrained Scheduling: a Constraint
Satisfaction Approach. PhD Thesis, Eindhoven University of Technology,
1994.

N. Sadeh. Look-ahead techniques for micro-opportunistic job-shop
scheduling. PhD Thesis, Carnegie Mellon University, CMU-CS-91-102,
1991.

[. Tsamardinos, N. Muscettola, P. Morris. Fast Transformation of Temporal
Plans for Efficient Execution. in Proceedings of AAAS 7998, Madison, WI,
1998.

